
Teknikattan scoring system

Albin Henriksson, Sebastian Karlsson, Victor Löfgren, Björn Modée, Josef Olsson, Max Rüdiger, Carl Schönfelder, Emil Wahlqvist

Jun 08, 2021

CONTENTS

1 Introduction 3

2 User manual 5

3 System overview 15

4 Installation 21

5 Development 25

6 Testing 29

7 Documentation 31

8 Contact 33

9 License 35

i

ii

Teknikattan scoring system

This project was developed during the period January-May 2021 as part of the course TDDD96 Kandidatprojekt i
programvaruutveckling at Linköping University. It was developed for Teknikåttan.

CONTENTS 1

https://liu.se/studieinfo/kurs/tddd96/vt-2021
https://liu.se/studieinfo/kurs/tddd96/vt-2021
https://www.teknikattan.se/

Teknikattan scoring system

2 CONTENTS

CHAPTER

ONE

INTRODUCTION

This is a short introduction to both the project as a whole and our system.

1.1 Introduction to the project

This is a short introduction to the project. There are several links to other relevant things to read before choosing this
project.

1.1.1 Before choosing this project

There are a lot of things this system needs to do. To get a complete description, see the original repository from
Teknikåttan. There you will see exactly what is expected of the system (click on each picture to see a video that will
give a more in-depth explanation). You may also what to look at the description of the project, if you have not already
done so. There is a lot to read (and watch) on these two links, but in doing so you will get a complete picture of the
requirements. Make sure you understand what this project entails before continuing with it, it is not as “simple” as it
might first seem.

1.1.2 Our perspective

This was a fun project. In contrast to some other previous projects the purpose of this one, what it’s requirements are
and why it’s useful, is clear. It is really fun developing a product you know (if it turns out well) many people will
appreciate, use, and see.

But on the other hand the project is large. There was a group that worked on this project before us. We could have
continued their project when we began, but we decided not to. This was in part due to it not really working and in
part due to lack of documentation. We hope to have learned from that mistake. That is why we have made proper
documentation (the one you are reading right now!) and a decent, working foundation of the system. We have also
made an effort to document the code as much as possible. We hope you continue on our efforts if you choose this
project.

3

https://github.com/TechnoX/teknikattan-scoring-system#beskrivning-av-hur-man-anv%C3%A4nder-systemet
https://github.com/TechnoX/teknikattan-scoring-system/blob/master/kandidatarbete_teknikattan.md

Teknikattan scoring system

1.1.3 Contact us

If you have any questions about the project, our system or anything, feel free to contact any of us.

1.2 Introduction to our system

This system allows a user to create, edit and host competitions. Below it is in short described what the system allows
you to do. If you want a more exact description (with pictures!), see the user manual

1.2.1 Login

After logging in you will be able to see all competitions and edit them. If you’re an admin you will also be able to see
all users and edit them. You will also be able to connect to an active competition from the same screen you used to
login.

1.2.2 Editor

The editor allows you to edit competitions. You can add, remove and reorder slides. You can add, delete and edit:

• teams

• text and image components

• questions

• question types

• correcting instructions

• background image.

1.2.3 Active competitions

You can also start a competition. This will let other people join it with codes that can be seen either before or after
starting a presentation. Then when you switch slides, start the timer or show the current score, it will also happen for
every other person connected to the same competition.

Depending on which code someone uses to join an active competition they will see different things, which we call
different views. The team view will allow the user to answer the questions. The judge view will allow the user to see
correct answers and give a score to the questions answered by a team. The audience view will show the current slide.

4 Chapter 1. Introduction

CHAPTER

TWO

USER MANUAL

The user manual will describe how to login, navigate the admin page, create and edit a competition and host and
participate in a presentation.

2.1 Login

The login page will let you either login as a user or join a competition with a code.

2.1.1 User

The first page you will be presented with when accessing the site is the login page. From here you can login with your
account by typing your email and password in their respective fields and pressing the “Logga in” button.

5

Teknikattan scoring system

2.1.2 Competition code

You can also choose the “Tävling” tab. Here you can enter your six character long code and by pressing the “Anslut
till tävling” button you will be able to join a competition.

These codes can be accessed from Admin.

2.2 Admin

After logging in you will see the admin page. To the left you will see the start page and the competitions tab. If you
are an admin you will also see regions and users. In the bottom left you will be able to logout by pressing the “Logga
ut” button.

6 Chapter 2. User manual

Teknikattan scoring system

2.2.1 Regions

The regions tab will show all regions. To create a new region, enter its name at the top and then click the “+” button.

2.2.2 Users

The users tab will allow you to see all users, their name, region and role. You will also be able to create new users by
clicking the “Ny användare” button. By clicking the three dots “. . . ” you will be able to edit or delete that user. You
will also be able to search for and filter users by their region or role.

2.2. Admin 7

Teknikattan scoring system

2.2.3 Competitions

The competitions tab will allow you to see all competitions, their name, region and year. You will also be able to
create a new competition by clicking the “Ny tävling” button or edit existing ones by clicking on their name. By click
on the three dots “. . . ” you will be able to start, show the codes for, copy or delete that competition.

8 Chapter 2. User manual

Teknikattan scoring system

Competition codes

By pressing the three dots “. . . ” for a competition and then pressing “Visa koder”, all the codes for that competition
will be shown. Here you will see what view each code is associated with and what the code is. You will also be able
to generate a new code, copy the code or copy a link to the code that will let others join, or even host, a competition
directly.

2.3 Editor

The competition manager will list all competitions. After clicking on a competition name you will enter the editor
and will be able to edit it. The Teknikåttan logo in the top left corner will take you back to the Admin page and right
under that all slides are shown. A newly created competition will have one empty default slide. Switch to a different
slide by clicking on it. In the bottom left corner you will be able to add a new slide using the “Ny sida” button. Delete
or copy a slide simply by right clicking on it and choosing the appropriate option. In the top right corner you will be
able to change which view you see and edit. By right clicking on a component you will be able to delete it or copy it
to the same or a different view.

2.3. Editor 9

Teknikattan scoring system

2.3.1 Competition settings

To the right you will see the active tab “Tävling”, which will show and let you edit everything about the entire
competition. There you will be able to edit the competition name, add a new team and a background image. The
background image for the competition will be used for all slides in the competition.

2.3.2 Slide settings

If you choose the “Sida” tab, you will be able to edit the current slide. In the top right you can change the question
type of the current slide. For all question types you will be able to add a timer for how long the teams have to answer
that question. Depending on which type you choose, you will have different options below. For this example we will
choose multiple choice (“Kryssfråga”). For this question type you will have the option to add a title to the question and
how much many points a correct answer yields. For this question type you will also be able to add alternatives, which
the teams will be able to choose between during a competition. Below that you will be able to add and remove text
and image components as well as a background image. The background image for the competition can be overridden
by explicitly setting it on a specific page.

10 Chapter 2. User manual

Teknikattan scoring system

2.4 Presentations

An active (i.e. started) competition is for simplicity’s sake called a presentation. There are many different views during
a presentation. Below it is described how to start a competition, how to join a presentation, and how the different kinds
of views work.

2.4.1 Competition codes

You can join a presentation with codes. This can either be done by pasting the link that can be copied when listing the
codes or can be typed by hand in the login page. All the views have different purposes and therefore looks a little bit
different from one another.

2.4.2 Operator

There are two ways to start a competition. The first way is to navigate to the competition manager, press the three
dots “. . . ” and press “Starta”. You will then enter the operator view. From there you will be able to go between slides
with the “<” and “>” buttons and start the timer, both will be synced between all clients connected to that presentation.
You will also be able to view all codes to the competition. You can also show the current score for all teams to the
audience.

2.4. Presentations 11

Teknikattan scoring system

2.4.3 Team

The team view will be used by teams. It shows the current slide (that the operator has decided) and allows the user to
answer questions on the slide, which will be saved.

12 Chapter 2. User manual

Teknikattan scoring system

2.4.4 Audience

The audience view will look like the operator view but without the buttons.

2.4.5 Judge

The judge view will show show the same slide as team view. To the left you will be able to move between different
slides without affecting the other clients and will be shown on which slide the operator currently is. To the right you
will see what the teams have answered on every question, what score each team got on each question, their total score
and be able to set the score of a team on any and all questions. In the bottom right you will see instructions for how to
grade the current question.

2.4. Presentations 13

Teknikattan scoring system

14 Chapter 2. User manual

CHAPTER

THREE

SYSTEM OVERVIEW

This is a brief overview of how the entire system works. There is then more detail about the client, the server and the
database.

3.1 System overview

The system has a fairly simple design, as depicted in the image below. The terms frontend and client as well as backend
and server will be used interchangeably.

First there is the main server which is written in Python using the micro-framework Flask. Then there is a fairly small
Node server with only one function, to serve the React frontend pages. Lastly there is the frontend which is written in
TypeScript using React and Redux.

3.1.1 Communication

The frontend communicates with the backend in two ways, both of which are authorized on the server. This is to make
sure that whoever tries to communicate has the correct level of access.

API

API calls are used for simple functions that the client wants to perform, such as getting, editing, and saving data.
These are sent from the client to the backend Node server that will forward the request to the main Python server. The
request will then be handled there and the response will be sent back. The Node server will then send them back to the
client.

Sockets

The client can also communicate directly with the server via sockets. These are suited for fast real time communication.
Thus they are used during an active presentation to sync things between different views such as current slide and timer.

15

Teknikattan scoring system

3.2 Client overview

The client is the main part of the system. It is divided into 4 pages: login, admin, presentation editor and active com-
petitions (presentations). The presentations is also further divided into four different views: operator view, audience
view, team view and judge view.

3.2.1 Competitions and Presentations

In this project competitions are often refered to when meaning un-active competitions while presentations are refered
to when meaning active competitions involving multiple users and sockets connecting them.

3.2.2 File structure

All of the source code for the pages in the system is stored in the client/src/pages/ folder. For each of the
different parts there is a corresponding file that ends in Page, for example JudgeViewPage.tsx or LoginPage.
tsx. This is the main file for that page. All of these pages also has their own and shared components, in the folder
relative to the page ./components/. Every React component should also have their responding test file.

3.2.3 Routes

All pages have their own route which is handled in client/src/Main.tsx. Futhermore the admin page has one
route for each of the tabs which helps when reloading the site to select the previously selected tab. There is also
a route for logging in with code which makes it possible to go to for example localhost:3000/CODE123 to
automatically join a competition with that code.

3.2.4 Authentication

Authentication is managed by using JWT from the API. The JWT for logging in is stored in local storage under token.
The JWT for active presentations are stored in local storage RoleToken so for example the token for Operator is
stored in local storage under OperatorToken.

3.2.5 Prettier and Eslint

Eslint is used to set rules for syntax, prettier is then used to enforce these rules when saving a file. Eslint is set to only
warn about linting warnings. These libraries have their own config files which can be used to change their behavior:
client/.eslintrc and client/.prettierrc

3.2.6 Redux

Redux is used for state management along with the thunk middleware which helps with asynchronous actions. Ac-
tion creators are under client/src/actions.ts, these dispatch actions to the reducers under client/src/
reducers.ts that update the state. The interfaces for the states is saved in each reducer along with their initial state.
When updating the state in the reducers the action payload is casted to the correct type to make the store correctly
typed.

16 Chapter 3. System overview

https://eslint.org/
https://prettier.io/
https://eslint.org/
https://github.com/reduxjs/redux-thunk

Teknikattan scoring system

3.2.7 Interfaces

In client/src/interfaces all interfaces that are shared in the client is located. client/src/
interfaces/ApiModels.ts and client/src/interfaces/ApiRichModels.ts includes all models
from the api and should always be updated when editing models on the back-end. This folder also includes some more
specific interfaces that are re-used in the client.

3.3 Server overview

The server has two main responsibilities. The first is to handle API calls from the client to store, update and delete
information, such as competitions or users. It also needs to make sure that only authorized people can access these.
The other responsibility is to sync slides, timer and answers between clients in an active competition. Both of these
will be described in more detail below.

3.3.1 Libraries

The server is built in Flask. A few extensions to Flask are also used. flask-smorest is used to defined the API routes.
It is this libray that automatically documents the API on localhost:5000 using Swagger. marshmallow is used to
convert database objects in JSON and to parse JSON back into Python objects. SQLAlchemy is used to interface with
the SQL database that is used. More specifically Flask-SQLAlchemy is used to integrate it with Flask. Flask-Bcrypt
is used to encrypt passwords.

3.3.2 Receiving API calls

An API call is a way for the client to communicate with the server. When a request is received the server begins by
authorizing it (making sure the person sending the request is allowed to access the route). After that it confirms that it
got all information in the request that it needed. The server will then process the client request. Finally it generates a
response, usually in the form of an object from the database. All of these steps are described in more detail below.

Routes

Each existing route that can be called is specified in the files in the app/apis/ folder. All available routes can also
be seen by navigating to localhost:5000 after starting the server.

Authorization

When the server receives an API call it will first check that the call is authorized. The authorization is done using
JSON Web Tokens (JWT) by comparing the contents of them with what is expected. Whenever a client logs into an
account or joins a competition, it is given a JWT generated by the server, and the client will need to use this token in
every subsequent request sent to the server in order to authenticate itself.

The needed authorization is specified by the ExtendedBlueprint.authorization() decorator. This deco-
rator specifies who is allowed to access this route, which can either be users with specific roles, or people that have
joined competitions with specific views. If the route is not decorated everyone is allowed to access it, and the only
routes currently like that is, by necessity, logging in as a user and joining a competition.

3.3. Server overview 17

https://flask.palletsprojects.com/en/2.0.x/
https://flask-smorest.readthedocs.io/en/latest/
https://marshmallow.readthedocs.io/en/stable/
https://www.sqlalchemy.org/
https://flask-sqlalchemy.palletsprojects.com/en/2.x/
https://flask-bcrypt.readthedocs.io/en/latest/

Teknikattan scoring system

JSON Web Tokens (JWT)

JSON Web Tokens (JWT) are used for authentication, both for API and socket events. A JWT is created on the
server when a user logs in or connects to a competition. Some information is stored in the JWT, which can be seen
in the file server/app/apis/auth.py. The JWT is also encrypted using the secret key defined in server/
configmodule.py. (NOTE: Change this key before running the server in production). The client can read the
contents of the JWT but cannot modify them because it doesn’t have access to the secret key. This is why the server
can simply read the contents of the JWT to be sure that the client is who it says it is.

Parsing request

The server receives data in three ways: In the query string, body and header. The data in the body and header is
sent in JSON format and needs to be converted into Python dictionaries. What data a route needs is specified by a
marshmallow schema and blueprint from flask-smorest.

Handling request

After the request has been authorized and parsed the server will process the request. What it does depends on the route
and the given arguments, but it usually gets, edits or deletes something from the database. The server uses an SQL
database and interfaces to it via SQLAlchemy. Everything related to the database is located in the app/database/
folder.

Responding

When the server har processed the request it usually responds with an item from the database. Converting a database
object to json is done with marshmallow. This conversion is specified in two files in the folder app/core/. The
file schemas.py converts a record in the database field by field. The file rich_schemas.py on the other hand
converts an id in one table to an entire object in the another table, thus the name rich. In this way, for example, an
entire competition with its teams, codes, slides and the slides’ questions and components can be returned in a single
API call.

3.3.3 Active competitions

Slides, timers, and answers needs to be synced during an active presentation. This is done using SocketIO together
with flask-socketio. Sent events are also authorized via JWT, basically the same way as the for the API calls. But for
socket events, the decorator that is used to authenticate them is sockets.authorization(). Whenever a client
joins a competition they will connect via sockets. A single competition cannot be active more than once at the same
time. This means that you will need to make a copy of a competition if you want to run the same competition at several
locations at the same time. All of the functionality related to an active competition and sockets can be found in the file
app/core/sockets.py. The terms active competition and presentation are equivalent.

18 Chapter 3. System overview

Teknikattan scoring system

Starting and joing presentations

Whenever a code is typed in to the client it will be checked via the api/auth/code API call. If there is such a code
and it was an operator code, the client will receive the JWT it will need to use to authenticate itself. If there is such
a code and the associated competition is active, the client will also receive a JWT for its corresponding role. Both of
these cases will be handled by the default connect event, using the JWT received from the API call. The server can
see what is stored in the JWT and do different things depending on its contents.

Syncing between clients

There are two other events that is used. The operator will emit the sync event to syncronise some values to all other
clients connected to the same competition. The server will then send sync to all connected clients with the values
that was updated. The server will also store these values and will syncronise these when a client joins a presentation.
The operator can also emit end_presentation to disconnect all clients from its presentation. This will also end
the presentation.

3.4 Database overview

3.4. Database overview 19

Teknikattan scoring system

20 Chapter 3. System overview

CHAPTER

FOUR

INSTALLATION

This section will describe how to install the application. You will need to install both the client and the server.

4.1 Installing the client

It is recommended to use Visual Studio Code to install and use the client, but it is not necessary. In order to install the
client, you will need to do the following:

Install Node (LTS).

Clone the git repository teknikattan-scoring-system.

Open a terminal and navigate to the root of the cloned project.

Install all client dependencies:

cd client
npm install

You should now be ready to start the client. Try it by running npm run start. A web page should open where you
can see the login page. If you are using VS Code you can also start the client with the task start client.

4.1.1 If there are any errors, please try this.

npm rm react react-dom
npm i -s react react-dom

4.2 Installing the server

The steps to install the server depend on if you are on Windows or Linux and if you are a developer or are running it
in production.

21

https://code.visualstudio.com/
https://nodejs.org/en/
https://gitlab.liu.se/tddd96-grupp11/teknikattan-scoring-system

Teknikattan scoring system

4.2.1 Windows

Clone the Git repository:

git clone https://gitlab.liu.se/tddd96-grupp11/teknikattan-scoring-system
cd ./teknikattan-scoring-system/

Install Python.

Make sure Python is installed properly.

Make sure pip is installed properly.

Install virtualenv and create a virtual environment:

pip install virtualenv
cd server
py -m venv env

Activate the virtual environment:

Set-ExecutionPolicy Unrestricted -Scope Process
./env/Scripts/activate

Continue to development and production.

4.2.2 Linux (Ubuntu)

Clone the Git repository:

git clone https://gitlab.liu.se/tddd96-grupp11/teknikattan-scoring-system
cd ./teknikattan-scoring-system/

Install Python.

Make sure Python is installed properly.

Install pip:

sudo apt install python3-pip

Make sure pip is installed properly.

Install and create a Python virutal environment and activate it:

sudo apt install python3-venv
cd server
py -m venv env
source env/bin/activate

Continue to development and production.

22 Chapter 4. Installation

https://gitlab.liu.se/tddd96-grupp11/teknikattan-scoring-system
https://www.python.org/downloads/
https://gitlab.liu.se/tddd96-grupp11/teknikattan-scoring-system
https://www.python.org/downloads/

Teknikattan scoring system

4.2.3 Development and production

Which dependencies you install will depend on if you are a developer or running the server in production.

If running in production:

pip install -r requirements.txt

If you are a developer:

pip install -r requirements-dev.txt

You should now be ready to start the server. Try it by running py main.py and navigate to localhost:5000. If
everything worked as it should you should see a list of all available API calls. If you are using VS Code you can also
start the server with the task start server.

4.2.4 Common issues

If you have any issues while installing, some of the things below might help.

Running Python

Test that Python is installed properly:

py --version

Make sure Python version > 3. If it works, you should see something along the lines of:

Python 3.9.4

If py is not working, try one of the following instead:

py -3
py3
python
python3

Running pip

Test that pip is installed properly:

pip --version

Make sure pip is running with Python 3.x (not Python 2.x). If everything works, it should look something along the
lines of:

pip 20.2.3 from d:\home\workspace\teknikattan-scoring-system\server\env\lib\site-
→˓packages\pip (python 3.9)

If pip is not running with Python 3.x, try one of the following instead:

pip3
py -m pip

If you still have trouble, try this guide.

4.2. Installing the server 23

https://pip.pypa.io/en/stable/installing/

Teknikattan scoring system

Problem: Failed building wheel for <package> when calling pip

Run the following command before installing the requirements:

pip install wheel

This guide can help you troubleshoot this problem further.

Problem: psycopg

pip install psycopg2

24 Chapter 4. Installation

https://stackoverflow.com/questions/53204916/what-is-the-meaning-of-failed-building-wheel-for-x-in-pip-install

CHAPTER

FIVE

DEVELOPMENT

This section will give all the instructions necessary to continue the development of this project. Some recommenda-
tions for how to go about it will also be given.

5.1 Frontend

Here it is described how to work with the frontend in the system.

5.1.1 Working with TypeScript

The main programming languange used for the front end is TypeScript.

npm

npm is the node package manager. Below we briefly describe how to use it. All of the following snippets assume you
are in the client folder.

To install a module, run npm install <module>.

To uninstall a module, run npm uninstall <module>.

To install all project dependencies, run npm install.

It is important to remember to install the project dependencies whenever someone else has added new ones to the
project.

5.2 Backend

5.2.1 Arguments when running backend

When running main.py several arguments can be used

arg1(action): server(default), populate
arg2(mode): dev(default), prod
arg3(database): lite(default), postgre

25

Teknikattan scoring system

Running server

main.py -> same as below
main.py server dev lite -> Run server in dev-mode with sql-lite

main.py server prod postgre -> Run server in production-mode with postgresql

Populating backend

main.py populate dev lite -> Populate database in dev-mode with sql-lite
main.py populate prod postgre -> Populate database in production-mode with postgresql

5.2.2 Working with Python

In this section we briefly describe how to work with Python.

Virtual environments

Python virtual environments are used to isolate packages for each project from each other. When installing the server
you installed virtualenv and created and activated a virtual environment.

Pip

Python uses pip to manage it’s packages. Here we briefly describe to use it. All of the following instructions assume
you have created and activated a virtual environment and are located in the server folder.

To install a package, run pip install <package>.

To uninstall a package, run pip uninstall <package>.

To save a package as a dependency to the project, run pip freeze > requirements.txt.

To install all project dependencies, run pip install -r requirements.txt.

Remember to install the project dependencies whenever you or someone else has added new ones to the project.

5.3 Visual Studio Code

The development of this project was mainly done using Visual Studio Code (VS Code). It is not that surprising, then,
that we recommend you use it.

26 Chapter 5. Development

Teknikattan scoring system

5.3.1 Extensions

When you first open the repository in Visual Studio Code it will ask you to install all recommended extensions, which
you should do. We used a few extensions to help with the development of this project.

The Python and Pylance extensions help with linting Python code, auto imports, syntax highlighting and much more.

Prettier is an extension used to format JavaScript and TypeScript. ESLint is used to lint JavaScript and TypeScript
code.

Live Share is an extension that is used to write code together at the same time, much like a Google Docs document.
There were however a few issues with the Python extension that made Live Share hard to work with.

5.3.2 Tasks

A task in VS Code is a simple action that can be run by pressing ctrl+shift+p, searching for and selecting
Tasks: Run Task. These tasks are configured in the .vscode/tasks.json file. Tasks that are marked as
build tasks (starting and testing tasks as well as populate) can also be run with ctrl+shift+b. A few such tasks
has been setup in this project and will be described below.

The Start server task will start the server.

The Start client task will start the client.

The Start client and server task will start both the client and the server.

The Populate database task will populate the database with a few competitions, teams, users and such. Look
in the populate.py to see exactly what it adds. Remember to always run this after changing the structure of the
database.

The Test server task will run the server tests located in the server/tests/ folder.

The Open server coverage task can only be run after running the server tests (Test server task) and will
open the coverage report generated by those tests in a web browser.

The Unit tests task will run the unit tests for the client.

The Run e2e tests task will run the end-to-end tests.

The Open client coverage task can only be run after running the client tests (Unit tests task) and will
open the coverage report generated by those tests in a web browser.

The Generate documentation task will generate the project documentation, i.e. this document, in the docs/
build/html/ folder.

The Open documentation task can only be run after generating the documentation and will open it in a web
browser.

5.4 External programs

These are some useful programs that can help with the development.

5.4. External programs 27

Teknikattan scoring system

5.4.1 Postman

Postman is a program used to test API calls. You can create and edit API calls, change the body, headers and even
share what you have saved. It’s very helpful when developing APIs.

5.4.2 DB Browser for SQlite

DB Browser for SQlite is used to see what is currently stored in the database. You can even edit values.

5.5 Further development

Because the project was time limited a lot is left to be done. Below we will give two different types of things to
improve. The first type is functionality, bugs and aesthetics which improves the usability of the system. The second
type is refactoring which is basically just things related to the source code. This won’t effect the end user but will
certainly improve the system as a whole.

5.5.1 Functionality, bugs and aesthetics

Most of the basic functionality of the system is already completed. There are however a few major things left to be
done.

Different question types

The system needs to support a lot of different types of questions. A list of all the questions that needs to be supported
(and more) can be found on Teknikattan scoring system.

Scaling of components

Components rendered in SlideDisplay.tsx in client are scaled inconsistently and should use scale transform from CSS.

5.5.2 Refactoring

Here we will give a list of things we think will improve the system. It is not certain that they are a better solutions but
definitely something to look into.

Server configuration

The server can be configured to run in development or production mode and can use either sqllite or postgresql. The
code to handle these configuration options were written very late in the project and should be refactored, maybe using
argparse.

28 Chapter 5. Development

https://www.postman.com/
https://sqlitebrowser.org/
https://github.com/TechnoX/teknikattan-scoring-system/blob/master/kandidatarbete_teknikattan.md
https://developer.mozilla.org/en-US/docs/Web/CSS/transform-function/scale()
https://docs.python.org/3/library/argparse.html

CHAPTER

SIX

TESTING

Here we briefly describe how we have tested the system. Both unit tests for the client and server has been made. Some
end-to-end tests have also been made that tests both the server and client at the same time.

6.1 Testing the client

The clients tests are the files named <name>.test.ts. They test the file called <name>.ts. They are run using
the VS Code task Unit tests.

6.2 Testing the server

The Python testing framework used to test the server is pytest.

The server tests are located in the folder ./server/tests. The tests are further divided into files that test the
database (test_db.py) and test the api (test_api.py).

The file test_helpers.py is used to store some common functionality between the tests, such as adding default
values to the database. There are also some functions that makes using the api easier, such as the get, post and
delete functions.

Run the tests by running the VS Code task Test server. After that you can see what has been tested by opening
the server coverage using the task Open server coverage.

6.3 End to end tests

The end to end tests are tests that test the entire system, both the server and the client. They are stored in the folder
/client/src/e2e/. Both the client and the server need to be running for the end to end tests to work. The tests
are run using the VS Code task Run e2e tests.

29

https://docs.pytest.org/
../development/vscode.html#tasks

Teknikattan scoring system

30 Chapter 6. Testing

CHAPTER

SEVEN

DOCUMENTATION

Here we describe how to generate this entire web page. We also describe how to generate documentation for the client
and server modules.

7.1 Generating this document

To generate this document you need to do a few things.

You will need to install make. If you are on Linux you probably already have it installed and can skip the two
following steps. If you are on Windows you need to do the following:

Download and install Chocolatey.

Install make using Chocolatey (open PowerShell as administrator):

choco install make

You also need to install the server.

You should now be able to generate the documentation by activating the Python virtual environment, navigating to
docs/ and running make html. Alternatively you can also run the VS Code task Generate documentation,
which will do the same thing. If everything went well you should be able to open it by running (from the docs/
folder) start ./build/html/index.html or running the task Open documentation, which does the
same thing.

7.2 Generating documentation for the client

To generate documentation for the client you first need to install the client.

After that you will be able to generate the documentation by running:

cd client/
typedoc

You will then able to open it by running:

start ./docs/index.html

If you want to include the documentation from the tests, go to the file client/tsconfig.json and comment out
the line "exlude": "**/*.test.*".

31

https://chocolatey.org/install
../development/vscode.html#tasks

Teknikattan scoring system

7.3 Generating documentation for the server

Generating the server documentation involves a few more steps.

You need to follow the same preparatory steps as you did to generate this document. That is installing make and
installing the server.

Run the following:

cd server/
mkdir docs
cd docs/
sphinx-quickstart

You will be asked a few questions about how to configure Sphinx. Just press enter on all, which will use the default.
You can enter the correct project name and/or author if you want, but it’s not necessary, no one but you will see it
anyway.

Then will need to modify a few files. First add the following code snippet after the first block of comments, above the
“project information” comment, in the file ./server/docs/conf.py:

import os
import sys

basepath = os.path.dirname(__file__)
filepath = os.path.abspath(os.path.join(basepath, "../"))
sys.path.insert(0, filepath)

Then in the same file add an extension to the list of extensions, like so:

extensions = ["sphinx.ext.autodoc"]

Then just write the word app on line 13 in the file server/docs/index.rst. The file will then look something
like:

.. toctree::
:maxdepth: 2
:caption: Contents:

app

Then the documentation can be generated by running (still in the docs/ folder):

sphinx-apidoc -o ./ ../app --no-toc -f --separate --module-first
make html

You can then open it by typing:

start ./_build/html/index.html

You could add all of the files we just added, except _build/, to Git if you want.

32 Chapter 7. Documentation

CHAPTER

EIGHT

CONTACT

The people involved in the project, their email, their role in the project, what they worked on generally and, if anything,
they worked on most will be described below. Please feel free to contact us if you have any questions.

Name Email Role Gener-
ally

Especially

Albin Henriks-
son

albhe428@student.liu.se Test Leader Front end Presentations, Editor, Test-
ing

Sebastian Karls-
son

se-
bka991@student.liu.se

Architect Front end Editor, Uploading pictures

Victor Löfgren vi-
clo211@student.liu.se

Configuration Manage-
ment

Back end Documentation, Sockets,
API

Björn Modée bjomo323@student.liu.se Quality Assurance Front end Redux
Josef Olsson josol381@student.liu.se Team Leader Back end Database, Testing
Max Rüdiger maxru105@student.liu.se Document Management Front end

Carl Schönfelder carsc272@student.liu.se Development Leader Back end Database, Uploading pic-
tures

Emil Wahlqvist emiwa210@student.liu.se Analyst Front end Editor

33

Teknikattan scoring system

34 Chapter 8. Contact

CHAPTER

NINE

LICENSE

MIT License

Copyright (c) 2021 Linköping University, TDDD96 Grupp 1

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

35

	Introduction
	User manual
	System overview
	Installation
	Development
	Testing
	Documentation
	Contact
	License

